Frontiers of Fracture Mechanics

Adhesion and Interfacial Fracture Contact Damage

Biology, Medicine & Dentistry – The Next Frontiers For Mechanics

- One of the current challenges in materials & mechanics is how to make adequate connections to biology and medicine
- This requires new knowledge and teaming approaches beyond the boundaries of our current efforts
 - medicine, dentistry
 - biology, chemistry, physics
 - materials and mechanics

The Benefits of The Mechanics Approach

- Theoretical/computational mechanics enable quantitative predictions of cause and effect
 - However biological systems are complex
 - Two approaches are often needed
- Experimental mechanics provides new insights and measurements
 - Enables model validation
 - Enables new clinical solutions

Background and Introduction

- This class presents selected examples at the frontiers of fracture mechanics
- These include:
 - Problems involving adhesion and interfacial fracture
 - Problems involving contact damage
- This focus is on applications of fracture mechanics in biomedical applications

Path to understanding the effects of multiple loadings on dental structure

Princeton University

Basic FEA on idealized 3-layer structure

Princeton University

FAILURES CAUSED BY HERTZIAN INDENTATION

Sub-surface crack is the major clinical failure mode.

Loading rate effects on 3-layer structure 200 Silicon 150 Critical Load, $P_{\rm III}$ (N) 120 100 Soda-lime glass 80 10^{-2} 10^{3} 10-1 10^{0} 10^{1} 10^{2} Loading Rate, \dot{P} (N·s⁻¹)

Plot of critical load P_m for radial cracking as function of loading rate P for coatings of soda-lime glass (filled symbols) and silicon (unfilled symbols) bonded to polycarbonate substrates. (Lee *et al.* 2002)

Princeton University

Contribution of Lawn's approach

- •Experimental study demonstrates the existence of loading rate effect
- •Silicon does not exhibit slow crack growth (SCG) but silicon tri-layer shows loading rate effect
- SCG model can only explain part of loading rate effect
 Material properties of the foundation and join layers may play important role

Approach of the Current Work

- Develop understanding of the constitutive behavior of individual layers
- Integrate the constitutive behavior into mechanics models
- Predict critical loads in multilayer structure
- Develop understanding of loading rate effects on deformation and cracking

Experiments

- Studied joins, foundations & multilayers with real dental materials ullet
- Measured constitutive behavior for individual layers (monotonic • compression tests)
- Studied cracking of multilayers (monotonic Hertzian contact tests) ٠

Hertzian contact Tests

Loading rate effect of critical load measurements

Princeton University

Loading rate effect of critical load on dental multilayer

Princeton University

Elasticity Analysis

Coating/substrate bi-layer model

– *B* and *d* are dimension coefficients

Princeton University

Bi-layer Slow Crack Growth solution

 Power law crack growth model

$$v = \frac{da}{dt} = v_0 \left(\frac{K}{K_{IC}}\right)^N$$

- K is stress intensity factor = $\psi \sigma a^{1/2}$
- N and v₀ are determined through four point bending tests
- Bi-layer SCG analytical solution (Lee. et al) $P_m = \left(A(N+1)P\right)^{\frac{1}{N+1}}$

Princeton University

Summary – Loading Rate Effects

- Experimental
 - -- studied constitutive behavior of individual layers
 - -- studied rate-dependent critical loads in multilayer structure

-- *in situ* study gives good observation of deformation and cracking in dental multilayer

• Modeling

-- implemented rate-dependent Young's modulus into multilayer structure with *real dental material*

-- developed analytical model for reasonable prediction of deformation and cracking in dental multilayer under monotonic loading

Princeton University

CYCLIC CONTACT EXPERIMENTS

- Model multilayers are subjected to cyclic Hertzian indentation for 10⁶ cycles
- Peak load levels lower than observed crack initiation loads under monotonic loading

CYCLIC HERTZIAN INDENTATION

0.8 mm, P=60 N 3.18 mm, P=70 N 8 mm, P=90 N Surface deformation after crack nucleation

8 mm, P=90 N Subsurface crack

0.8 mm, P=60 N 3.18 mm, P=70 N Hertzian cone crack (Soboyejo et al, 2001)

MAXIMUM PRINCIPAL STRESS DISTRIBUTION

DEFORMATION DURING CYCLIC LOADING

Two Sources — Time dependent response of epoxy layer — Accumulation of plastic strain in epoxy layer

Sample loaded for million cycles at each load level at 5 Hz loading rate

Subsurface Pop-In Conditions

Pop-In Criteria(Lawn, 2001)

POSSIBLE MECHANISMS OF SUB-SURFACE CRACKING

- Mechanics-driven crack growth due to flow of the cement into the crack
- Stress corrosion cracking
- Mechanical fatigue

HYDRAULIC FRACTURE TEST

Glass cracks under certain pressure.

NORMALIZED STRESS INTENSITY FACTOR

a/R

CEMENT FLOWS INTO CRACK

CRACK GROWTH RATE

$$\frac{da}{dt} = \frac{2H^2 p_0}{3\mu a} \cdot \frac{1}{\sin\left[K_c \sqrt{\pi} / (p_0 \sqrt{a})\right]} \cdot \frac{1}{\tan\left[K_c \sqrt{\pi} / (2p_0 \sqrt{a})\right] - K_c \sqrt{\pi} / (4p_0 \sqrt{a})} \cdot \left(1 - \frac{\sigma \cos\theta}{p_0 H}\right)$$

$$\frac{da}{dt}\Big|_{a\to\infty} = \frac{8H^2 p_0^3}{3\pi\mu K_c^2} \cdot \left(1 - \frac{\sigma\cos\theta}{p_0H}\right)$$

If $H=1\mu m$, $p_0=2$ MPa, $K_c=0.5$ MPa-s, $\mu=100$ Pa-s, $\sigma\cos\theta=0.005$ N/m, then

 $da/dt = 0.27 \ \mu m/s$

Summary – Cyclic Contact

- Pop-in conditions are strongly influenced by ball size in Hertzian indentation experiments
- Ball size effects explained using simple contact mechanics models
- Hydraulic fracture may be caused by water within cracks
- Mechanics model developed for hydraulic fracture modeling
- Mechanistically-based fatigue model needed

Modeling of Water Diffusion

- Cracking is shown in top ceramic layer after the dental multilayers immersed in water for some time.
- Major observations:
 - 1. cracking occurs after some time, and becomes more extensive as time increases.
 - 2. cracking first occurs near the edge of the sample and propagates parallel to the edge.
 - 3. cracking initiates from the bottom surface of the top layer.

Courtesy of Prof. V.P. Thompson, NYU Dental School

Real Questions

- Is the stress induced by water diffusion high enough to cause the cracking?
- Can the crack pattern be understood by water diffusion induced SCG?

Thermal diffusion analogy

Water diffusion----->Heat transferWater induced foundation expansion---->Thermal expansion

MAXIMUM PRINCIPAL STRESS DISTRIBUTION DURING WATER DIFFUSION

- Maximum tensile stress appears at the bottom surface of the top layer.
- Peak tensile stress first appears near the edge and is parallel to the edge.

Maximum Principal Stress Distributions in Dental Crown Multilayer

Slow Crack Growth Theory

Crack growth rate:

$$da / dt = v_0 \left(K / K_{IC} \right)^N$$

Stress intensity factor:

$$K = \psi \sigma a^{1/2}$$

Criteria to form subsurface crack:

$$\int_{0}^{t_{R}} \sigma(t)^{N} dt = D$$
$$D \approx \frac{K_{IC}^{N}}{(N/2 - 1)v_{0}\psi^{N}a_{i}^{N/2 - 1}} \text{ independent of time and load}$$

Driving force to form subsurface crack:

$$\left[\int_{0}^{t}\sigma(t)^{N}dt\right]^{1/N}$$

SCG in Top Glass Layer Due to Water Diffusion

• Water diffusion is very important in determining the lifetime of dental multilayers.

Summary – Modeling of Water Diffusion

- Model predicts the cracking in the top ceramic layer after the dental multilayers immersed in water for some time.
- Model also predicts the major observations:
 - 1. cracking occurs after some time, and becomes more extensive as time increases (due to stresses associated with water distribution).
 - 2. cracking first occurs near the edge of the sample and propagates parallel to the edge (consistent with stresses and slow crack growth).
 - 3. cracking initiates from the bottom surface of the top layer (ditto).

Courtesy of Prof. V.P. Thompson, NYU Dental School

BIO-INSPIRATION - TOOTH STRUCTURE

ELASTIC MODULUS DISTRIBUTION IN DENTIN-ENAMEL JUNCTION (DEJ)

G.W. Marshall Jr., et al. J Biomed Mater Res 54, 87-95, 2001

MECHANICAL PROPERTIES OF DENTAL MATERIALS/MULTILAYERS

	Dental ceramic E: 50~200 GPa			
	Dental cement E=5 GPa			
Dental restoration	Dentin-like polymer E=20 GPa			

Enamel E=65 GPa

Dentin-Enamel Junction (DEJ): Graded

Real tooth

Dentin E=20 GPa

DENTAL CROWN RESTORATION FGM DESIGN

Dental ceramic E: 50-200 GPa Functionally graded layer

Dental cement E: 2-13 GPa

Dentin-like polymer E: 10-30 GPa

MAXIMUM PRINCIPAL STRESS DISTRIBUTION

Maximum Principal Stress

Effects of Different Distributions of Young's Modulus

Effects of FGM on Fracture Toughness

Stress intensity factor: $K_I = \beta \sigma \sqrt{\pi a}$, $\beta = f(E_2 / E_1, v_1, v_2)$ Critical defect length: $a_c = K_c^2 / (\pi \beta^2 \sigma^2)$

Comparison of Critical Defect Lengths

Maximum Principal Stress in the Ceramic (MPa)

Brazil-nut Sandwich Sample Test in Determining Interfacial Toughness between a Dental Cement Composite and Glass Substrate

Load, P

Schematics of (a) teeth contact during chewing and (b) Brazil-nut sandwich samples under contact loading Schematic illustration of Brazil-nut sandwich sample and setup for fracture testing

Experimental Results of Brazil-nut Sandwich Sample Test

Geometry of Brazil-nut Sandwich Sample in Numerical Simulation

Introduction to Cohesive Zone Models for Interfacial Failure

Cohesive Bond Rupture Leads to Physical Crack Growth

• Various Kinds of Cohesive Zone Laws

Interfacial Potential and Tractions

Xu and Needleman (1994) proposed an interfacial potential of the following form

$$\phi(\Delta) = \phi_n + \phi_n \exp\left(-\frac{\Delta_n}{\delta_n}\right) \{ [1 - r + \frac{\Delta_n}{\delta_n}] \frac{1 - q}{r - 1} - [q + \left(\frac{r - q}{r - 1}\right) \frac{\Delta_n}{\delta_n}] \exp\left(-\frac{\Delta_t^2}{\delta_t^2}\right)$$

to derive the normal and tangential traction as follows

$$T_n = \frac{\partial \phi}{\partial \Delta_n}$$
 and $T_t = \frac{\partial \phi}{\partial \Delta_t}$

which gives

$$T_{n} = -\frac{\phi_{n}}{\delta_{n}} \exp\left(-\frac{\Delta_{n}}{\delta_{n}}\right) \left\{\frac{\Delta_{n}}{\delta_{n}} \exp\left(-\frac{\Delta_{t}^{2}}{\delta_{t}^{2}}\right) + \frac{1-q}{r-1} \left[r - \frac{\Delta_{n}}{\delta_{n}}\right] \left[1 - \exp\left(-\frac{\Delta_{t}^{2}}{\delta_{t}^{2}}\right)\right]\right\}$$
$$T_{t} = -\frac{\phi_{n}}{\delta_{n}} \left(2\frac{\phi_{n}}{\delta_{t}}\right) \frac{\Delta_{t}}{\delta_{t}} \left\{q + \left(\frac{1-q}{r-1}\right)\frac{\Delta_{n}}{\delta_{n}}\right\} \exp\left(-\frac{\Delta_{n}}{\delta_{n}}\right) \exp\left(-\frac{\Delta_{t}^{2}}{\delta_{t}^{2}}\right)$$

Interfacial Properties Employed in Simulation

	COHESIVE ENERGY (J/M/M)	NORMAL COHESIVE STRENGTH (MPA)	TANGENTIAL COHESIVE STREGNTH (MPA)	CRITICAL INTERFACIAL SEPARATION (micron)
SET 1	16.3	6	7	1
SET 2	17.6	6.5	7.6	1
SET 3	19	7	8.2	1
SET 4	15	5.5	6.4	1

For simplicity, the cohesive energy and critical interfacial separation are assumed to be equal in both normal and tangential direction

Comparison between Simulation and Experimental Results

Fracture Toughness of Glass/Cement and Zirconia/Cement Interface

Microstructure Effect : FIB

Focused Ion Beam Images of Interfacial Cracks in Ceramic/Cement Interface

Concluding Remarks

- This class presents an introduction to contact damage in dental multilayers
- Complex loading and geometry idealized to provide insights into mechanisms
- Rate-dependent slow crack growth model used to describe underlying physics
- Bio-inspired design concept presented for the design of robust interfaces
- Interfacial fracture mechanisms explored using a combination of models and experiments